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ABSTRACT

Models fail to reproduce observations of the coldest parts of the Sun’s atmosphere, where interactions

between multiple ionized and neutral species prevent an accurate MHD representation. This paper

argues that a meter-scale electrostatic plasma instability develops in these regions and causes heating.

We refer to this instability as the Thermal Farley-Buneman instability, or TFBI. Using parameters

from a 2.5D radiative MHD Bifrost simulation, we show that the TFBI develops in many of the colder

regions in the chromosphere. This paper also presents the first multi-fluid simulation of the TFBI

and validates this new result by demonstrating close agreement with theory during the linear regime.

The simulation eventually develops turbulence, and we characterize the resulting wave-driven heating,

plasma transport, and random motions. These results all contend that effects of the TFBI contribute

to the discrepancies between solar observations and radiative MHD models.

1. INTRODUCTION

The chromosphere is the complex interface region be-

tween the photosphere and the million-degree corona.

For solar modeling it is crucial to understand the chro-

mosphere, since all energy transfer from the surface of

the Sun to the corona must pass through this intermedi-

ary region. The chromosphere presents a modeling chal-

lenge as it spans many parameter regimes, microphysics

may play an important role, and the assumptions of

MHD break down. Over the last few decades, large im-

provements have been made with radiative (M)HD mod-

els, which capture a large variety of chromospheric dy-

namics such as magneto-acoustic shocks (see e.g. Carls-

son & Stein 1992, 1995, 2002; Wedemeyer et al. 2004;

Carlsson 2007), spicules (Hansteen et al. 2007; Mart́ınez-

Sykora et al. 2017), and flux emergence (Cheung & Isobe

2014). Some models have been further improved to in-

clude the effects of ion-neutral interactions (Leake et al.

2014; Mart́ınez-Sykora et al. 2015; Ballester et al. 2018,

and references therein) and non-equilibrium ionization

(Leenaarts et al. 2007; Golding et al. 2014; Przybylski

et al. 2022).

However, comparisons between chromospheric observ-

ables and synthesis from those models reveal large dis-

crepancies in some areas. The observed profiles, such

as Mg II from IRIS (De Pontieu et al. 2014), are typi-

cally wider than the corresponding synthesized profiles

(Carlsson et al. 2019). Additionally, comparisons be-

tween IRIS and ALMA observations and recent single-

fluid radiative MHD models, which include ion-neutral

interaction and non-equilibrium effects, indicate that

spicules are up to a few thousand degrees colder in the

models (Chintzoglou et al. 2021). These issues might

be alleviated by including the heating and turbulent ef-

fects of small-scale plasma instabilities, which are miss-

ing from such models.

Fontenla et al. (Fontenla 2005; Fontenla et al. 2008)

originally suggested that the Farley-Buneman (FB) in-

stability can lead to heating in the chromosphere. They

argued that convective motions of neutral gas drag the

mostly collisionally-demagnetized ions across the solar

magnetic field while the electron motion remains pri-

marily tied to the magnetic field lines. This causes the

development of currents and electrostatic waves which

lead to instability, as described in Dimant & Sudan

(1995). The work by Fontenla (2005); Fontenla et al.

(2008) treats the FB instability appropriately for the

ionosphere, where it was originally discovered, but ne-

glects crucial terms that become relevant in the chromo-

sphere. Madsen et al. (2014) includes some such terms

by treating the instability with a multi-fluid model, yet

neglects proton magnetization; Fletcher et al. (2018)

shows that ion magnetization effects reduce the prev-

elance of the instability in the chromosphere.
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By simulating the instability using a kinetic Particle-

in-Cell code, Oppenheim et al. (2020) discovered that

temperature perturbations significantly affect instabil-

ity properties under chromospheric parameters. They

improved the theory to include these thermal effects,

predicting the new instability which we refer to as the

Thermal Farley-Buneman instability (TFBI). Dimant

et al. (in prep 2022) further studies the linear theory

of this instability in different limiting cases, and deter-

mines that a multi-fluid model may be sufficient to re-

produce the TFBI for chromospheric parameters. The

Thermal Farley-Buneman instability is not limited to

only appearing in the solar chromosphere, though. It

could appear in other stellar atmospheres as well, and

likely appears in various planetary ionospheres, includ-

ing Earth’s ionosphere. It may affect the dynamics in

molecular clouds, and heat transfer in accretion disks.

Any partially ionized plasma having sufficiently strong

flows across magnetic field lines, along with the appro-

priate fluid densities and temperatures, may produce the

TFBI.

To study the Thermal Farley-Buneman instability in

the Sun’s chromosphere, we utilize the new multi-fluid

code, Ebysus (Mart́ınez-Sykora et al. 2020). Ebysus

treats each ionized level of each atomic species as a sep-

arate fluid, with the ability to handle any number of

fluids in the same simulation. Using Ebysus, we simu-

late the multi-fluid Thermal Farley-Buneman instability

in a fluid-model code for the first time. The ability to

produce this instability in a fluid-model code enables

studies at larger scales and across more chromospheric

parameter regimes than what is possible with kinetic

codes alone.

The remainder of this paper is structured as follows.

Section 2 discusses the instability theory and simulation

setup. Section 3.1 describes our prediction about where

the multi-fluid TFBI occurs in the Sun’s chromosphere,

based on a single-fluid radiative 2.5D simulation of the

solar atmosphere. Section 3.2 shows our multi-fluid sim-

ulation output and confirms the growth rate and wave

properties agree with the TFBI theory. Section 3.3 dis-

cusses the non-linear stage of the simulation and the

resulting heating and random motions. This paper con-

cludes with a summary of the results in Section 4.

2. THEORY AND SIMULATION STRUCTURE

Both the instability theory (Dimant et al. in prep

2022, see also Appendix A) and the Ebysus simulations

(Mart́ınez-Sykora et al. 2020) in this work use a multi-

fluid model to study the chromosphere. In this model,

the continuity, momentum, and energy equations govern

the number density, ns; velocity, ~us; and temperature

(in energy units), Ts, for each fluid (s):

∂ns
∂t

+∇ · ns~us = 0 (1a)

ns
ds~us
dt

= −∇ (nsTs)

ms
+ ns

qs
ms

(
~E + ~us × ~B

)
+
∑
j

nsνsj (~uj − ~us) (1b)

dsTs
dt

= −2

3
Ts∇ · ~us +

∑
j

2ms

ms +mj
νsj

[mj

3
(~uj − ~us)2 + (Tj − Ts)

]
(1c)

where dsf/dt = ∂f/∂t + ~us · ∇f , and sums are taken

over all fluids including electrons. The atomic mass and

charge of fluid species s arems and qs, while ~E and ~B are

the electric and magnetic fields, respectively. The col-

lision frequency for momentum transfer to fluid s from

fluid j is νsj , for s 6= j, and the model assumes elastic

collisions. Note that this model treats each species as

an ideal gas, and neglects the effects of ionization and

recombination, thermal conduction, and gravity.

The models for both theory and simulation in this

work also assume quasineutrality:

∑
s

nsqs = 0 (1d)

and both models use this equation to solve for ne, in-

stead of the electron continuity equation.

The theory closes the system via the electrostatic as-

sumption, ∂ ~B/∂t = 0. The mean electric field can be

determined via the electron momentum equation, while

perturbations of ~E are handled by the linear theory.

Meanwhile, the Ebysus code allows ~B to vary. Ebysus

includes equations (1), as well as Faraday’s and Am-

pere’s laws without displacement current:

∂ ~B

∂t
= −∇× ~E (2a)

µ0
~J = ∇× ~B (2b)
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where µ0 ≈ 4π× 10−7N/A2 is the vacuum permeability

constant, and ~J =
∑
s nsqs~us is the current.

Ebysus determines ~B by updating it every timestep

using Faraday’s law (2a). To calculate the elec-

tric field, Ebysus solves the electron momentum equa-

tion (1b) for ~E, assuming negligble electron inertia:

(me/qe)de~ue/dt→ 0. Finally, to determine the electron

velocity, Ebysus solves ~ue using Ampere’s law (2b) and

the definition of current. This fully closes the system of

equations in the Ebysus model.

In the next sections we discuss the instability theory,

the initial conditions of the multi-fluid Ebysus simula-

tion presented in this work, and the numerical methods

utilized by Ebysus.

2.1. Linear Theory of the Thermal Farley-Buneman

Instability

Linear instability theory makes predictions about

small perturbations in a static background. This theory

considers plane waves with real wavevector ~k and com-

plex frequency ω, where all perturbations are propor-

tional to exp
[
i
(
~k · ~x− ωt

)]
. Solutions with Im(ω) > 0

are unstable, with exponential growth rate Im(ω).

This paper applies the linear theory described in Op-

penheim et al. (2020); Dimant et al. (in prep 2022). In

addition to the effects present in the Farley-Buneman in-

stability, this work includes physical effects relevant in

the chromosphere: thermal perturbations, arbitrary ion

and electron magnetization, and generalizing for arbi-

trarily many ion fluids. Beyond equations (1), we make

some additional assumptions to simplify the algebra. In

particular, we assume the plasma is weakly ionized and

contains only one neutral fluid, n, which does not re-

spond to any perturbations, and we neglect Coulomb

collisions while assuming all other collision frequencies

are constant. The weak ionization assumption is rea-

sonable in extended regions of the chromosphere, and in

those regions the Coulomb collisions are orders of mag-

nitude smaller than collisions with neutrals Wargnier

et al. (2022, and references therein). We also assume

the perturbation is electrostatic, i.e., any magnetic field

response to the perturbation is negligible. Additionally,

since two dimensions perpendicular to ~B are sufficient

to reproduce the TFBI, we consider only such solutions

here, enforcing ~k· ~B = 0. Finally, we assume that the un-

perturbed values are constant in space and time. This

assumption of vanishing gradients may need revisiting

in the future, as gradients might provide important con-

tributions to the instability in some parameter regimes.

The equations and assumptions above lead to the disper-

sion relation for this model, summarized in Appendix A.

Figure 1. Predicted growth rate (Im(ω)) as a function of

wavevector (~k), using kz = 0, ~B = | ~B|ẑ, for the parameters
shown in Table 1. The black arrows in the lower right corner
indicate the directions of ~E and − ~E × ~B for these condi-
tions. The red annotations highlight the point with the peak
growth rate, indicating its value (Im(ωpeak) = 2440 s−1) and

location (~kpeak = (6.83x̂− 0.94ŷ) m−1).

Figure 1 shows the predicted linear instability growth

rate for the set of parameters in Table 1, representing

a cold region from a simulated chromosphere (see Sec-

tion 3.1). At each wavevector ~k, the growth rate is the

largest imaginary part of all the solutions ω to the dis-

persion relation (Eqs. A1). This prediction is calculated

numerically by converting the dispersion relation to a

polynomial in ω and applying a polynomial root-finding

algorithm; see Appendix A for more details. The max-

imum growth rate of roughly Im(ωpeak) = 2440 s−1 oc-

curs at ~kpeak = (6.83x̂ − 0.94ŷ) m−1. This corresponds

to plane waves with a wavelength of 0.91 m, at an angle

of roughly 8◦ below the +x axis. This angle is 65◦ coun-

terclockwise from the ~E direction, and the magnitude of

the electric field is | ~E| = 8.9 V/m.

The direction of ~k gives insight into the physical mech-

anisms causing the instability. The thermal effects in the

instability cause the largest growth rates for wavevec-

tors parallel (or anti-parallel) to the bisector of − ~E and
~E× ~B. Meanwhile the pure Farley-Buneman instability

has maximum growth for wavevectors parallel (or anti-

parallel) to the ~E × ~B direction (Dimant & Oppenheim

2004; Dimant et al. in prep 2022). The wavevector at

peak growth rate ~kpeak according to theory is 20◦ coun-

terclockwise from the bisector of ~E and − ~E× ~B, and 25◦

clockwise from the − ~E × ~B direction. This implies that

for the chosen parameters, the thermal and the Farley-

Buneman effects both play an important role.

The length and time scales also help contextualize this

instability. The wavelength at peak growth rate, 0.91 m,
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is much larger than the debye lengths (λD,s = 90, 200,

and 100 µm for H+, C+, and e-, respectively) and larger

than the collisional mean free paths ((
√
Ts/ms)/νs,H =

0.02, 0.1, and 0.009 m for H+, C+, and e-, respec-

tively). Meanwhile, the peak growth rate, Im(ωpeak) =

2.4 × 103 s−1, and the wave frequency at that peak,

Re(ωpeak) = 2.0 × 104 s−1, correspond to timescales

much smaller than those relevant to the macro-scale dy-

namics in the chromosphere (see e.g. Wedemeyer et al.

2004; Pereira et al. 2013; Carlsson et al. 2019).

Finally, we gain further insight into this instability by

considering the role of each ion species individually. Re-

calculating the theory using similar densities and tem-

peratures but using H+ as the only ion species leads

to smaller growth rate predictions with peak closer to
~k = 0. Repeating the calculation once more but this

time using C+ as the only ion species leads to larger

predicted growth rates which peak at larger ~k. We con-

clude that both ions are important to the instability,

with C+ driving the instability and H+ suppressing it.

2.2. Simulation Structure and Initial Conditions

To study a simplified case of this instability, we restrict

ourselves to a 2D simulation using periodic boundary

conditions including only electrons (e-), hydrogen neu-

trals (H), hydrogen ions (H+), and singly-ionized carbon

(C+). We choose parameters, summarized in Table 1,

inspired by a cold region in the chromosphere where lin-

ear theory predicts the Thermal Farley-Buneman insta-

bility will grow. We include singly-ionized Carbon in

particular because initial studies of the TFBI using PIC

simulations and theory indicate that it is among the

most important ionized species in determining the prop-

erties of this instability under chromospheric conditions

(Oppenheim et al. 2020).

In Table 1, the mean values for ion densities, magnetic

field, and neutral density, velocity, and temperature

were chosen to represent a relatively cold region from a

2.5D radiative single-fluid MHD simulation of the chro-

mosphere (see Section 3.1). The mean electron density

satisfies the quasineutrality equation (1d). The other

initial mean velocities and temperatures are selected nu-

merically such that the mean accelerations (∂~us/∂t) and

temperature variations (∂Ts/∂t) of all other fluids are as

close to zero as possible. These velocity and tempera-

ture selections bring the simulation conditions closer to

the physics described by the theory, which assumes con-

stant mean values. The electric field is determined by

solving the electron momentum equation, initially giv-

ing ~E(t=0) = (2.58x̂ − 8.53ŷ) V/m, but later causing

changes in ~E as shown in Appendix C.

n [m−3] ux [m/s] uy [m/s] T [K] νs,H [s−1]

e- 3.6× 1015 - 8690 - 1790 7160 1.6× 107

C+ 6.0× 1014 - 1090 - 4410 4830 1.4× 104

H+ 3.0× 1015 + 190 - 1260 4060 6.7× 105

H 8.0× 1019 0 0 4000 —

~Bsim = (10 G) ẑ J
(imposed)
x = 5 A/m2

∆x = ∆y = 2.5 cm (Nx, Ny, Nz) = (512, 512, 1)

Table 1. Initial mean values of simulation parameters,
representing a relatively cold region in the chromosphere.
The table shows the means of number density (n), x- and
y-components of velocity (ux and uy), temperature (T ), and
momentum transfer collision frequency with neutrals (νs,H),
for each fluid. The table also indicates the mean magnetic
field in the simulation plane ( ~Bsim); the imposed current

(J
(imposed)
x ) as described by equations (3); the grid cell width

in x and y (∆x and ∆y); and the number of cells in the x,
y, and z dimensions (Nx, Ny, and Nz).

We chose a current of 5 A/m2 for the multi-fluid sim-

ulation, to reduce computational costs. This current is

roughly 10 times larger than any currents found in the

macro-scale simulated chromosphere discussed in Sec-

tion 3.1. However, changing the current does not affect

the linear theory of the TFBI if all the ion densities

also change by the same factor. Ion densities 10 times

smaller than those in Table 1 still appear in cold regions

throughout the simulated chromosphere, where ion den-

sities vary across multiple orders of magnitude. Thus,

the linear regime of the multi-fluid TFBI simulation here

is still relevant to any region with the same ratios of

current and ion densities, and the same values for other

parameters.

The momentum transfer collision frequencies are cal-

culated self-consistently, following the formalism of

Wargnier et al. (2022, and references therein). In partic-

ular, the (H+, H) collisions take into account the charge

exchange resonance, and are treated as non-maxwellian.

The (C+, H) collisions are treated assuming maxwell

molecules. The (e-, H) collision frequency is calculated

by performing the collision integral over experimentally

determined differential cross sections. Coulomb collision

frequencies would be orders of magnitude smaller than

the other collision frequencies due to the small ioniza-

tion fraction, however Coulomb collisions were instead

turned off to simplify comparison between this simula-

tion and the linear theory.

The TFBI must be driven by some energy source in

order to grow. Given the chromospheric conditions se-

lected in Table 1, for a 2.5D multi-fluid simulation a suf-
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ficient source of energy can come from a current flowing

across the box. Such a current can be caused by mag-

netic field lines bending out of the plane:

~B = ~Bsim − zµ0J
(imposed)
x ŷ (3a)

where the simulation box is in the xy plane, z=0;
~Bsim = ~B(z=0) is the magnetic field in the simulation;

and J
(imposed)
x is some arbitrary value that determines

the magnetic field line curvature. Bending the field lines

affects the simulation only through spatial derivatives in
~B, which only appear in the Ebysus model through Am-

pere’s law (2b). Plugging equation (3a) into Ampere’s

law yields:

µ0
~J = ∇× ~Bsim + µ0J

(imposed)
x x̂ (3b)

In our simulation, ~Bsim is constant except for a small

spatial perturbation, with perturbation strength (the

ratio between standard deviation and mean) peaking

at 2.2 × 10−3, and always remaining less than 1.1%

of the electron density perturbation strength. Because

the mean of ~Bsim is constant in time, the imposed cur-

rent term provides the mean value for the current. For

a nonzero current, the relative velocity differences be-

tween fluids enables energy transfer through collisions

with neutrals, which may be sufficient to drive the TFBI

depending on the value of the current.

While the imposed current is sufficient to drive the

TFBI for our simulation, in theory it may be unnec-

essary. The imposed current serves to create sustained

relative drifts between charged fluids and neutrals. Such

sustained drifts might be generated without an imposed

current in a significantly different parameter regime or

with different fluids. However, for our simulation, re-

moving the imposed current causes any velocity differ-

ences to vanish significantly faster than the instability

growth rate.

2.3. Numerical Scheme

Ebysus (Mart́ınez-Sykora et al. 2020) is a multi-fluid

radiative electromagnetic simulator designed to model

the Sun’s chromosphere. Here, we describe how we use

this code to study the Thermal Farley-Buneman insta-

bility. For example, although Ebysus can utilize oper-

ator splitting for semi-implicit time evolution, we will

not go into detail because for simulations in this work

we use only explicit methods. Some of the architecture

and methodology in Ebysus are inherited from Bifrost

(Gudiksen et al. 2011).

Ebysus utilizes a 3rd-order predictor-corrector Hyman

explicit timestep method (Hyman 1979) to calculate

derivatives with respect to time. The numerical domain

is defined in a staggered mesh, where values sometimes

must be aligned in space. As necessary, interpolation is

performed using a 5th-order scheme. Meanwhile, spatial

derivatives are computed using a 6th-order scheme. The

details of the staggered mesh, interpolation, and spa-

tial and temporal derivative calculations match those of

Bifrost.

Ebysus also includes artificial hyperdiffusion terms for

stability, which primarily diffuse sharp fluctuations at

small scales (5 grid cells or less). These terms are sim-

ilar to those in Bifrost, but have been adapted to the

multi-fluid model. Their exact forms are detailed in Ap-

pendix B.

3. RESULTS

Section 3.1 discusses the predicted growth rate for

the Thermal Farley-Buneman instability throughout the

chromosphere. This result comes from applying the lin-

ear theory to a single-fluid macro-scale simulation, and

predicts that the instability occurs throughout many of

the relatively cold regions in the chromosphere. Sec-

tion 3.2 presents the main multi-fluid simulation from

this work, and analyzes the simulation growth rates to

confirm they match closely with theory. Section 3.3

demonstrates that this instability leads to increased

temperatures and fluctuations in speed, as well as varied

mean velocities, for all fluids in the simulation. Taken

together, these results indicate that the effects of the

TFBI may significantly affect heating, transport, and

random motions throughout the colder regions in the

chromosphere.

3.1. Predicting Regions of Instability in the

Chromosphere

To predict where the Thermal Farley-Buneman in-

stability occurs throughout the chromosphere, we com-

bine the linear instability theory with the output from

a single-fluid macro-scale simulation run using the ra-

diative MHD code, Bifrost (Gudiksen et al. 2011).

This single-fluid simulation treats the hydrogen and he-

lium ionization and recombination in non-equilibrium

(Leenaarts et al. 2007; Golding et al. 2016), and incor-

porates some of the effects of interactions between ions

and neutrals by including ambipolar diffusion (Nóbrega-

Siverio et al. 2020). This work improves upon the related

prediction in Oppenheim et al. (2020), by solving the

full multi-fluid linear theory including thermal pertur-

bations, and utilizing output from a Bifrost simulation

which included non-equilibrium-ionization modeling.

For this work, we convert the single-fluid Bifrost simu-

lation output into a set of multi-fluid parameters includ-

ing only H, H+, C+, and electrons. The magnetic field,
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along with the H and H+ density, come directly from the

Bifrost simulation output, as the densities were tracked

via the non-equilibrium-ionization modeling. The tem-

peratures of all fluids are set equal to the simulated

single-fluid temperature, for simplicity. The neutral ve-

locity is set to zero, while the velocities of charged fluids

come from the ambipolar velocity (Hall drift), as de-

tailed in Mart́ınez-Sykora et al. (2012). Finally, the C+

density is set to the appropriate fraction of the single-

fluid density, assuming photospheric abundances to find

the density of carbon (Asplund et al. 2009) and assum-

ing statistical equilibrium to determine the ionization

fraction.

Figure 2 shows the resulting growth rate prediction

for the TFBI throughout the simulated chromosphere.

At each point in space, the growth rate is determined by

taking the largest imaginary part of all the solutions for

ω across a variety of ~k. We tested values of ~k with mag-

nitude 0.1, 0.3, 1, 3, 10, 30, 100, or 300 [m−1], and each

of 18 directions separated by 10 degree increments in the

plane perpendicular to the local magnetic field. Points

with negative growth rate are shown in gray. Note in

particular that the predicted instability growth is corre-

lated with the colder temperatures in the chromosphere.

At every location with predicted growth, the single-

fluid MHD model may be innacurate as it fails to in-

corporate the effects of the TFBI. Combined with the

prediction of heating due to the TFBI (see Figure 6 in

the next section), this supports the possibility of the

TFBI being responsible for the missing heating in chro-

mospheric models.

White regions in Figure 2 indicate where the assump-

tions of the TFBI theory break down, and the growth

rate was not calculated. In the upper chromosphere and

above, white regions indicate areas where the plasma

does not satisfy the weakly ionized assumption, defined

here as nion/nneutral < 0.01. In the lower chromosphere

and below, white regions indicate areas where the elec-

trons are not magnetized, with |qe|| ~B|/(meνe,H) < 2. In

regions of weakly magnetized or demagnetized electrons,

we discovered that the TFBI theory sometimes predicts

instability growth (not shown on the plot), however it

is only for large wavelengths (|~k| . 0.01 m−1) and long

timescales (Im(ω) . 0.001 s−1). We mask these results

because the lower solar atmosphere may be dynamic on

such timescales (see e.g. Wedemeyer et al. 2004; Pereira

et al. 2013; Carlsson et al. 2019) which invalidates the

assumption of constant background as required by the

linear theory. Furthermore, any physical mechanisms

responsible for instability involving demagnetized elec-

trons may be different than those responsible for the

TFBI.

While Figure 2 clearly suggests that the TFBI oc-

curs ubiquitously throughout the colder regions in the

chromosphere, there are a few causes for concern about

whether the numerical values of the predicted growth

rates are similar to those in the actual chromosphere.

Firstly, the underlying Bifrost simulation does not cor-

rectly represent the physics of TFBI, and incorporating

such effects may produce different results. In particular,

large electric fields develop in Bifrost that indicate hy-

personic drifts. These probably would be mitigated by

the TFBI. The instability would also cause heating and

changes in velocity. Secondly, the assumptions that we

applied to convert the single-fluid Bifrost simulation out-

put into a set of multi-fluid values for the TFBI theory

could make these predictions inaccurate. Finally, gra-

dients (e.g. in number density or temperature) are not

included in the theory presented here, which assumes a

constant background, but such gradients may affect the

wave properties and growth rates.

Due to the limitations of this analysis and the Bifrost

model, we further explore these predictions in Figure 3.

This figure shows various parameters in one particular

area where there are two distinct regions of predicted in-

stability growth. First, we check that the previous pre-

diction was not missing any significant regions of insta-

bility, by sweeping across more possible values of ~k. The

leftmost panel of Figure 3 shows the predicted growth

rates after checking values of ~k with each of 24 magni-

tudes between 0.1 and 681 [m−1] (inclusive) with even

logarithmic spacing, and each of 60 directions separated

by 3 degree increments in the plane perpendicular to the

local magnetic field. This more accurate search predicts

that the instability will occur in the same regions as in

Figure 2, though with slightly larger growth rates.

The second and third panels in Figure 3 further

characterize the predicted wave properties in this re-

gion. The second panel shows the phase speed, vφ =

Re(ω)/|~k|. The third panel shows the flow angle, the

angle from ~E × ~B to ~k or −~k, whichever is closer. This

angle gives insight into which effects contribute to the

instability. In the single-species ion case with strongly

magnetized electrons and weakly magnetized ions, pure

Farley-Buneman waves have a flow angle near 0◦, while

waves dominated by thermal effects have a flow angle

close to 45◦, the bisector of − ~E and ~E × ~B (Dimant &

Oppenheim 2004; Dimant et al. in prep 2022). Consid-

ering the lower left area of predicted instability, this im-

plies that the instabilities near the edges of this area may

be dominated mainly by thermal effects, while the insta-

bilities near its center may have significant contributions

from both thermal and Farley-Buneman effects — re-
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Figure 2. (Top) growth rate of the multi-fluid Thermal Farley-Buneman instability throughout the chromosphere from a
Bifrost simulation snapshot. The gray regions represent tested points with negative growth rates. The white regions show
untested points where the assumptions of the TFBI theory are not satisfied. Note that x spans 50 Mm, while the z direction
ranges from 0 at the photosphere, up to 1.1 Mm. (Bottom) temperatures from the same Bifrost simulation snapshot. Many of
the colder regions overlap with locations of predicted growth of the TFBI.

Figure 3. Various parameters plotted in the region 25.5 Mm < x < 27.5 Mm, 0 < z < 0.5 Mm using the same Bifrost snapshot
as in Figure 2. From left to right, these panels show: the predicted growth rates, when testing more values of ~k than those
used in Figure 2; the phase speed, vφ = Re(ω)/|~k|; the flow angle, i.e. the angle from ~E × ~B to ~k or −~k, whichever is closer;
the electron magnetization, |κe| = |qe|| ~B|/(meνe,H); the ionization fraction, ne/nH ; the magnetic field magnitude, | ~B|; and the
electric field magnitude, | ~E|. In the first three panels, gray indicates negative growth rate predictions, while white corresponds
with untested points where the TFBI assumptions break down.
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quiring the Thermal Farley-Buneman instability theory

for an accurate description.

The remaining panels in Figure 3 provide some

other physical parameters for reference. The fourth

panel provides the electron magnetization, |κe| =

|qe|| ~B|/(meνe,H), which is larger than 2.0 for all non-

white points in the first three panels. The fifth panel

shows the ionization fraction, ne/nH , which is smaller

than 0.01 for all non-white points in the first three pan-

els. The sixth panel plots the magnitude of the mag-

netic field, | ~B|. The final panel shows the magnitude of

the electric field, | ~E|, which reaches to more than 1000

V/m in some regions; such large electric fields could be

mitigated by the presence of the TFBI, which is not

incorporated into the Bifrost simulation. Note in par-

ticular that the areas of predicted growth for the TFBI

are dictated by the physical parameters, which form into

complicated shapes rather than follow any sort of simple

layering scheme in the chromosphere.

3.2. Simulation of the Instability

We use Ebysus to run a multi-fluid simulation of a rel-

atively cold region in the chromosphere with magnetic

field lines bent out of the plane, using the parameters

in Table 1. This simulation shows a clear wave pattern

similar to that found in kinetic simulations (Oppenheim

et al. 2020). The growth rate agrees with linear the-

ory during the linear regime, indicating an accurate re-

production of the Thermal Farley-Buneman instability.

This success demonstrates that multi-fluid simulators

are capable of producing the TFBI.

Figure 4 and the corresponding animation show the

electron number density throughout the simulation. We

initialize the number density at t = 0 (top left panel)

with a random perturbation having standard deviation

approximately 4.6 orders of magnitude smaller than the

background density, smoothed by a gaussian kernel to

mitigate numerical artifacts at the grid scale. A clear

wave pattern develops by t = 1.0 ms (top middle panel),

and the perturbation grows according to linear theory.

By t = 3.0 ms (top right panel), the perturbation has

grown by roughly two orders of magnitude. At around

t ≈ 5.2 ms (bottom left panel), nonlinear effects start

to develop, as the perturbation becomes comparable in

magnitude to the mean density, 3.6× 1015 m−3.

Around t ≈ 5.3 ms, the root-mean-square pertur-

bation reaches its maximum of roughly 27% of the

background value, though it eventually settles down to

roughly 17% by the end of the simulation. The bot-

tom middle panel of Figure 4 shows that by t = 5.6 ms,

secondary waves have developed and spread through-

out the simulation box. From this time onwards, the

linear-stage TFBI is no longer the dominant effect in

the simulation. Finally, the bottom right panel shows

the density when the simulation ends at t = 7.9 ms.

By the end of the simulation, the perturbations reach a

quasi-steady state where the amplitude and scale size of

features settle to roughly constant values.

To confirm that this simulation really does reproduce

the TFBI, Figure 5 compares growth rates from the sim-

ulation to theory. To determine the growth rates, we

compute a Fourier transform in space at each snapshot

in time, Ft(~k), of the electron number density pertur-

bation from t = 0.6 ms to t = 1.9 ms. According to

linear theory, the magnitude at each ~k should scale as

exp [Im(ω)t]. Thus, for each ~k, the slope of the best

fit line through the natural log of the magnitude of the

Fourier transforms provides the simulation growth rate,

γ = Im(ω), as follows:

γ t+ offset = ln
∣∣∣Ft(~k)

∣∣∣ (4)

The left panel of Figure 5 plots the results of this fitting

process. The right panel of the figure compares simula-

tion and theory directly by overlaying contours of γ as

determined here for the simulation, and in Section 2.1

for the theory.

Figure 5 shows remarkably close agreement between

simulation and theory. Comparing qualitatively at the

peak growth rates, the simulation growth rate ω
(sim)
peak is

6.6% less than ωpeak in the theory. The magnitude of

the wavevector at the simulation peak |~k(sim)
peak | is 9.6%

smaller than in the theory, and its direction ~k
(sim)
peak dif-

fers from the theory peak by 10.8◦. From this close

agreement, we conclude that this simulation does indeed

reproduce the TFBI described by linear theory.

A small discrepancy still remains between simulated
and predicted growth rate versus wavevector distribu-

tions. One possible source of error is the changing back-

ground quantities. In particular, the theory neglects

any zeroth order acceleration (ds~us/dt), and tempera-

ture variations (dsTs/dt). Meanwhile, some background

acceleration and heating in the simulation is an unavoid-

able consequence of the imposed current (see equations

(3)), although the magnitude depends on the simulation

parameters.

To check whether the zeroth-order effects of imposed

current are the main source of the discrepancy, we re-

peated the simulation but using imposed current and

ion number densities 10 times larger (not shown here).

This change of parameters has almost no effect on the

theoretical prediction, while increasing the zeroth-order

acceleration and heating of all electrons and ions by a

factor of 10. The discrepancy between simulation and
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Figure 4. Perturbation of electron number density at selected snapshots throughout the simulation. The associated movie
available online shows the evolution throughout the entire simulation. Note that the color scale varies between panels in this
figure, and varies in time in the animation. Panels show snapshots of the simulation at different stages, including the initial
conditions, the linear growth phase, and the nonlinear regime.

theory also increases significantly. Quantitatively, at the

peak for this test simulation, the growth rate is 11.6%

less than in the theory (compare with 6.6% from the

main simulation), |~k| is 7.4% smaller than in the the-

ory (compare with 9.6%), and the direction of ~k differs
from the theory peak by 14.7◦ (compare with 10.8◦). We

conclude that the zeroth-order acceleration and heating

terms are the most likely main source of error in the

original simulation.

Other possible sources of error include electromagnetic

effects, which are included in the simulation but not the

theory, and any artifacts of the numerical method used

for the simulation. The small magnetic field fluctua-

tions, with relative size less than 1% compared to the

relative size of density fluctuations, suggest the electro-

magnetic assumption does not introduce a sizeable error.

Meanwhile, we found the numerical diffusion effects to

be small, especially during the linear growth stages of

the simulation, implying at most minor error contribu-

tions from numerical artifacts.

The linear stage of the main TFBI simulation confirms

the instability occurs for the chromospheric parameters

in Table 1, as well as for any similar plasma with the

same ratios of current and ion densities. In particular,

the simulation also reproduces the linear stage of the

TFBI for such plasma, because the linear theory is un-

affected by changing current and ion densities by the

same factor. Additionally, the trend from test simula-

tion to main simulation suggests that similar simulations

with even smaller current and ion densities would have

even better agreement between the linear regime of the

simulation and the linear theory.

In the next section, we analyze the effects of turbu-

lence throughout this simulation. While we are confi-

dent that this simulation accurately represents the lin-

ear regime for any similar plasma with the same ratios

of current and ion densities, it is not yet clear how the

nonlinear behavior would be altered by using different

parameters.
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Figure 5. (Left) growth rate as a function of wavevector, calculated using simulation outputs during the linear growth stage.

(Right) contours of the growth rate versus ~k map from the simulation (red, solid lines) and the theoretical prediction from
Figure 1 (blue, dashed lines), labeled with values in units of s−1. The close agreement supports the claim that this simulation
reproduces the Thermal Farley-Buneman instability. The remaining discrepancy between theory and simulation is addressed
further in the main text.

3.3. Effects of Turbulence — Heating, Transport, and

Random Motion

While the linear theory fully breaks down at around

t = 5.2 ms in our simulation of the Thermal Farley-

Buneman instability, turbulence affects the tempera-

tures and velocities of fluids as soon as t = 4.0 ms,

when the r.m.s. electron density perturbation reaches

approximately 3% of the mean electron density. These

non-linear effects do not arise physically in macro-scale

models which fail to resolve the small-scales (a few me-

ters, and a few milliseconds) and to include the multi-

fluid physics relevant to the TFBI. Therefore, effects of

the TFBI might cause disagreements when comparing

such models to solar observations. In this section, we use

our simulation to investigate the turbulence-driven heat-

ing, transport, and random motions due to the TFBI.

Figure 6 illustrates the turbulence-driven heating in

the simulation. The plots show the evolutions of fluids’

temperatures throughout the simulation, as well as the

temperature evolution predictions for a no-instability

model with the same physical parameters as in the sim-

ulation (shown in Table 1) but which lacks the spatial

resolution to reproduce the TFBI. These no-instability

temperature predictions are constructed by plugging

mean values of quantities into the energy equation (1c)

to calculate ∂Ts/∂t from t = 0 to t = 0.5 ms — when

the instability effects become relevant — then extrapo-

lating linearly until the end of the simulation. The no-

instability model shows constant nonzero heating due to

the imposed current (see Eqs 3).

There is significant heating due to the Thermal Farley-

Buneman instability. In the simulation, the electron

temperature overshoots up to 3000 K more than its

original value of 7000 K, before settling down to about

8300 K, 1300 K above the original temperature. The

ion temperatures look qualitatively similar: C+ peaks

at an increase of 1200 K before settling to 400 K above

the no-instability model temperature, while H+ peaks

at an increase of 100 K and settles to an increase of

30 K. The neutral temperature does not overshoot, but

ends up approximately 10 K larger by the end of the

simulation due to thermalization with the other fluids

that all heat up in the presence of the TFBI. This heat-

ing may contribute towards heating the actual chromo-

sphere, and may help explain why macro-scale models

such as Bifrost predict temperatures thousands of Kelvin

smaller than those implied by observations.

The heating comes from collisional effects. Collisions

convert the kinetic energy into thermal energy, and al-

low fluids to thermalize with each other. The dissipation

of velocity drifts heats the ions and electrons, though a

majority of that thermal energy transfers into the neu-

trals. Still, the neutral temperature changes less than

the other fluids’ temperatures because the neutrals are

multiple orders of magnitude denser than the other flu-

ids.

Figure 7 illustrates the turbulence-driven transport in

the simulation. The plots show the evolutions of flu-

ids’ velocities throughout the simulation, broken up into

components parallel and perpendicular to the mean elec-

tric field. Similarly to Figure 6, these plots also compare
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Figure 6. Temperature evolutions of each fluid throughout
the simulation of the TFBI. Solid lines show mean temper-
atures throughout the simulation. Dashed lines show tem-
perature predictions using the same physical parameters but
without accounting for the instability. Linear theory alone
predicts no change in mean temperatures due to the insta-
bility; around t = 4.0 ms, nonlinear effects start to become
important and cause heating.

to a no-instability model, constructed here by plugging

mean values into the momentum equation (1b) to cal-

culate the accelerations until t = 0.5 ms, then extrapo-

lating linearly after that time. The no-instability model

has a nonzero slope due to the imposed current (see Eqs

3).

There is moderate transport due to the Thermal

Farley-Buneman instability in this simulation. For each

velocity component of each fluid, the non-linear effects

are not apparent until roughly t = 4.0 ms, at which

point the behavior changes, leading to an overshoot then

settling towards some particular deviation from the no-

instability model. Parallel to ~E, the electrons end up

with a velocity of roughly -920 m/s, 120 m/s less than

the no-instability model predicts. The ion and neu-

tral velocities in this direction all differ from the no-

instability model by less than 5%. Perpendicular to ~E,

the electrons end up with a simulation mean velocity

which is roughly 450 m/s (5%) larger due to the insta-

bility. The ion velocities in this direction increase by

roughly 5% due to the instability, while the neutral ve-

locity decreases by roughly 5%.

Altering the mean velocities affects the electric field

strength and direction. Electrons travelling parallel to ~E

work to short out the field, while those travelling perpen-

dicular to ~E increase the field. For our simulation, the

impact of increased perpendicular transport is stronger

than the change in transport pallel to ~E, leading to

an increased electric field magnitude, as shown in Ap-

pendix C. To incorporate these effects into a macro-scale

model, more work is required to determine the behavior

of instability-driven transport and electric field changes

across a range of parameters. Eventually, these effects

could be modeled by parametrically adjusting electron

and ion collision frequencies with neutrals, altering the

effective cross-field conductivities.

Figure 8 shows the random motions of each fluid

throughout the main multi-fluid simulation. These mo-

tions are computed by taking the standard deviation of

the speed (i.e., magnitude of velocity) for each fluid at

each simulation snapshot. Similarly to the turbulence-

driven heating, the random motion speeds of all the

charged fluids overshoot, then settle down to some value

above a baseline. The relevant baseline in this case is 0;

a model lacking the resolution to consider fluctuations

would see zero deviation from the mean caused by effects

at this scale.

There are notable random motions due to the TFBI.

The standard deviation of electron speed overshoots to

5200 m/s before settling to roughly 2500 m/s. For H+,

the peak is around 900 m/s before settling to roughly

400 m/s. For C+, the peak is at 1150 m/s, and the

random motion speed decreases to 750 m/s by the end

of the simulation. The neutral speed does not overshoot

but ends up at approximately 4 m/s, due to collisions

with the other fluids in the simulation. These random

motions would contribute to broadening spectral lines

in observations, and their values are consistent with the

so-called “microturbulence” inferred through inversions

of observations (da Silva Santos et al. 2020).

4. CONCLUSIONS

Combining the linear instability theory of a multi-fluid

model and the output of a single-fluid simulation, this

work predicts that the Thermal Farley-Buneman insta-

bility occurs throughout many of the colder regions in

the chromosphere. This prediction improves upon the

related prediction in Oppenheim et al. (2020) by solv-

ing the full multi-fluid linear theory including thermal

perturbations, and utilizing output from a Bifrost simu-
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Figure 7. Velocity evolutions throughout the TFBI simulation, for each fluid (electrons, C+, H+, H from top to bottom).
Solid lines show mean velocities throughout the simulation. Dashed lines show velocity predictions using the same physical
parameters but not accounting for any instability. The left panels show the velocity component in the electric field direction,
~u · Ê, while the right panels show the component perpendicular to the electric field, |~u − (~u · Ê)Ê|, where Ê = ~E/| ~E|. Linear
theory alone predicts no change in mean velocities due to the instability; around t = 4.0 ms, nonlinear effects start to become
important and cause acceleration.

lation which included non-equilibrium-ionization model-

ing. Our estimates reveal that the single-fluid radiative

MHD model has extended regions which may be innacu-
rate since the model does not incorporate effects of the

TFBI.

Focusing on the parameters found in one of these

colder regions in the chromosphere, we produce the first

multi-fluid simulation of the TFBI. We validate this by

showing close agreement between the simulation and lin-

ear theory. For computational reasons, we used a cur-

rent that is too large by roughly an order of magni-

tude, compared to those in the single-fluid simulated

chromosphere. This adjustment does not affect the lin-

ear theory, but likely contributes to the small error be-

tween simulation and theory during the linear regime.

The ability to produce this instability with a multi-fluid

code enables further study of the instability across chro-

mospheric parameter ranges which are computationally

challenging for kinetic models.

Our multi-fluid simulation exhibits turbulence-driven

heating, transport, and enhanced random motions of all

fluids in the simulation. The significant heating sup-

ports the possibility that the TFBI may contribute to-

wards chromospheric heating. The transport will mod-

ify cross-field conductivities and electric fields, and the

random motions should broaden spectral lines in ob-

servations. However, non-linear effects may behave dif-

ferently for different sets of parameters throughout the

chromosphere. Determining quantitatively the impacts

of the TFBI throughout this complex region may require

a suite of small-scale multi-fluid simulations spanning a

wide range of parameters.

The non-linear effects caused by the TFBI occur on

scales of meters and milliseconds — far smaller than

what has been resolved by macro-scale simulations of

the Sun’s atmosphere — yet they may play an impor-

tant role in explaining observations of chromospheric

heating and line-broadening due to random motion.
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Figure 8. Random motions of each fluid throughout the
simulation of the TFBI. The y-axis shows the standard de-
viation of the fluid speed, and is split into top and bottom
plots with different scaling so that the changes for neutral
hydrogen are visible.

These effects motivate further study of the Thermal

Farley-Buneman instability and its impact throughout

the chromosphere.
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APPENDIX

A. LINEAR MULTI-FLUID INSTABILITY THEORY

Starting with fluid equations (1), one may derive a theoretical prediction for the properties of linear waves. This

is done by linearizing the equations and assuming the original equations hold for the unperturbed values of each

quantity. The resulting system of differential equations can be solved by plugging in the ansatz that for some real ~k

and complex ω all perturbations are proportional to exp
[
i
(
~k · ~x− ωt

)]
. This yields a linear system of equations in the

perturbed quantities. Eliminating the perturbed quantities provides a relationship between ~k, ω, and the unperturbed

background.

In this work we allow for an arbitrary number of ion fluids with arbitrary magnetization, and we include thermal

terms. However, we still make some further assumptions to simplify the algebra. In particular, we assume there is

only one neutral fluid, n, which does not respond to any perturbations, neglect collisional effects between non-neutral

fluids (“Coulomb collisions”), and assume all other collision frequencies are constant. We also assume the perturbation

is electrostatic, i.e. the magnetic field’s response to the perturbation is negligible. Finally, we consider only those

solutions where the wavevector ~k is perpendicular to the magnetic field ~B. After considerable algebra, we find the

dispersion relation is:

1 +
∑
i∈ions

(
λ2D,e
λ2D,i

)
Gi
Ge

= 0 (A1a)

where the terms are defined as follows:

Gs = As

(
1−

[
1 +

2

3µs

]
As −

Bs
µs

)−1
(A1b)

As = −iT
(0)
s

ms

~k · ~k
νsnωs

[
Ws

W2
s + κ2s

]
(A1c)

Bs =
4mn

3(mn +ms)

(
~u
(0)
s − ~un

)
ωs

·

([
Ws

W2
s + κ2s

]
~k +

[
κs

W2
s + κ2s

] ~k × ~B

| ~B|

)
(A1d)

µs = 1 + 2i

(
ms

mn +ms

)
νsn
ωs

(A1e)

Ws = 1− iωs/νsn (A1f)

ωs = ω − ~k · ~u(0)s (A1g)

and the debye length are magnetization parameter are

defined in the usual way:

λ2D,s =
ε0T

(0)
s

q2sn
(0)
s

, κs =
qs| ~B|
msνsn

(A1h)

Above, n
(0)
s , ~u

(0)
s , and T

(0)
s are the background num-

ber density, velocity, and temperature (in energy units)

of non-neutral fluid s. By our assumptions, the neu-

tral fluid does not respond to the perturbation, so the

neutral velocity ~un is constant. Note these expressions

adopt the convention qe < 0.

Through further manipulation, the dispersion rela-

tion may be rewritten into a ratio of polynomials in

ω. We use the author’s algebraic manipulation package,

SymSolver1, to accomplish this task, rather than do it

by hand. Considering only two ion species as done in

1 https://gitlab.com/Sevans7/symsolver

https://gitlab.com/Sevans7/symsolver
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this work, the resulting polynomials are 18th-order in ω.

Such a system is too complicated to solve analytically.

However, there are many existing routines for finding the

roots of polynomials numerically. In this work, we use

the roots method from the numpy.polynomial package

to find the roots of polynomials numerically for a given

set of physical parameters and for each value of ~k.

A more detailed derivation and analysis for this dis-

persion relation and the Thermal Farley-Buneman in-

stability theory can be found in Dimant et al. (in prep

2022). Note there are a couple differences between the

dispersion relation here and in that work. Here, we in-

clude the case where neutral velocity is nonzero. Also,

since Dimant et al. (in prep 2022) uses the poisson equa-

tion instead of assuming quasineutrality, there is an ad-

ditional term which appears on the right hand side of

the generic dispersion relation in that work. For the pa-

rameters of the simulation in our work, we confirmed

numerically that this additional term has negligible ef-

fect on growth rate predictions.

B. NUMERICAL SCHEME — ARTIFICIAL

DIFFUSION

The artificial hyperdiffusion terms in Ebysus primar-

ily diffuse sharp fluctuations at small scales (5 grid cells

or less). These terms are similar to those in Bifrost

(Gudiksen et al. 2011), but have been adapted to the

multi-fluid simulations discussed in this work. In partic-

ular, these terms are added to the continuity, momen-

tum (each component treated separately), and energy

equations (1a, 1b, 1c) for every fluid. Including only the

hyperdiffusion terms used in this work, each of these

equations ∂fs/∂t = (original RHS) becomes:

∂fs
∂t

= (original RHS) + ν1C
(fast)
s

∑
x′
i∈{x′,y′}

∂

∂x′i

[
∂fs
∂x′i

Qx′
i

(
∂fs
∂x′i

)]
(B2a)

where

Qx′
i
(g) =

(
∂

∂x′i

∂g

∂x′i

)/(
|g|+ 1

q

∂

∂x′i

∂g

∂x′i

)
(B2b)

Here, ν1 = 0.01 and q = 1.0 are constants, C
(fast)
s =√

(γTs/ms)
2

+B2/ (µ0msns) is the speed of the fast

magnetosonic wave for fluid s, γ = 5/3, and x′ and

y′ are the spatial coordinates x and y normalized such

that grid cells each have length 1.

C. SIMULATION ELECTRIC FIELD

The electric field varies throughout the Ebysus simu-

lations discussed in this work. Figure 9 plots the mean

electric field for the main simulation of the Thermal

Farley-Buneman instability presented in this work, see

for example Section 3.2 and Figure 4. This figure shows

the magnitude and direction of the mean electric field

throughout the simulation, calculated by solving the

electron momentum equation for ~E assuming no electron

inertia. The magnitude increases roughly linearly from

8.91 to 8.97 V/m during the first 4.0 ms of the simula-

tion, increases to its peak of 10.33 V/m at t = 5.30 ms,

decreases, then fluctuates before reaching its final value

of 9.35 V/m at the end of the simulation. The angle

increases roughly linearly from −73.2◦ to −72.1◦ dur-

ing the first 4.0 ms, increases to its peak of −60.4◦ at

t = 5.32 ms, decreases, then fluctuates before reaching

its final value of −67.3◦.

Figure 9. Mean electric field throughout the simulation of
the TFBI. The top plot indicates the magnitude, while the
bottom plot indicates the angle with respect to the positive
x-axis.


	1 Introduction
	2 Theory and Simulation Structure
	2.1 Linear Theory of the Thermal Farley-Buneman Instability
	2.2 Simulation Structure and Initial Conditions
	2.3 Numerical Scheme

	3 Results
	3.1 Predicting Regions of Instability in the Chromosphere
	3.2 Simulation of the Instability
	3.3 Effects of Turbulence — Heating, Transport, and Random Motion

	4 Conclusions
	A Linear Multi-fluid Instability Theory
	B Numerical Scheme — Artificial Diffusion
	C Simulation Electric Field

